Phân tích đa thức thành nhân tử là kiến thức cơ sở cho những bài học tập về nhân chia solo thức, nhiều thức đặc biệt trong các biểu thức phân số gồm chứa biến hóa trong chương trình toán 8 và cả những lớp sau này.

Bạn đang xem: Phân tích đa thức thành nhân tử


Chính vày vậy, mà câu hỏi nắm vững những cách phân tích nhiều thức thành nhân tử bằng phương pháp đặt nhân tử chung, đội hạng tử, hay phương thức dùng hằng đẳng thức là vấn đề rất cần thiết. Nội dung bài viết dưới đây sẽ tổng vừa lòng các cách thức phân tích đa thức thành nhân tử và áp dụng giải các dạng bài bác tập này.

I. Các phương thức phân tích đa thức thành nhân tử

1. Phân tích đa thức thành nhân tử bằng cách thức đặt nhân tử chung

* Phương pháp:

Tìm nhân tử tầm thường là những 1-1 thức, đa thức có mặt trong toàn bộ các hạng tử.

- phân tích mỗi hạng tử thành tựu của nhân tử thông thường và một nhân tử khác.

- Viết nhân tử chung ra ngoài dấu ngoặc, viết những nhân tử sót lại của mỗi hạng tử vào trong vết ngoặc (và cả vệt của chúng).

 * Ví dụ. phân tích các nhiều thức sau thành nhân tử.

 a) 15x3 - 5x2 + 10x = 5x.(3x2) + 5x.(-x) + 5x.(2) = 5x(3x2 - x + 2)

 b) 28x2y2 - 21xy2 + 14x2y = 7xy.(4xy) + 7xy.(-3y) + 7xy.(2x) = 7xy(4xy - 3y + 2x)

2. Phân tích nhiều thức thành nhân tử với cách thức dùng hằng đẳng thức

* Phương pháp:

- chuyển đổi đa thức bạn đầu về dạng không còn xa lạ của hằng đẳng thức, tiếp đến sử dụng hằng đẳng thức để triển khai xuất hiên nhân tử chung.

Cần chú ý đến việc vận dụng linh hoạt những hằng đẳng thức xứng đáng nhớ:

 ♦ (A+B)2= A2+2AB+B2

 ♦ (A–B)2= A2– 2AB+ B2

 ♦ A2–B2= (A-B)(A+B)

 ♦ (A+B)3= A3+3A2B +3AB2+B3

 ♦ (A – B)3= A3- 3A2B+ 3AB2- B3

 ♦ A3+ B3= (A+B)(A2- AB +B2)

 ♦ A3- B3= (A- B)(A2+ AB+ B2)

 ♦ (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC

* Chú ý: a+b= -(-a-b) ; (a+b)2= (-a-b)2 ; (a-b)2= (b-a)2 ; (a+b)3= -(-a-b)3 ; (a-b)3=-(-a+b)3

* Ví dụ: Phân tích các nhiều thức sau thành nhân tử.

 a) 9x2 – 4 = (3x)2 – 22 = ( 3x– 2)(3x + 2)

 b) 8 – 27x3y6 = 23 – (3xy2)3 = (2 – 3xy2)(4 + 6xy2  + 9x2y4)

 c) 25x4 – 10x2y + y2 = (5x2 – y)2

3. Biện pháp phân tích đa thức thành nhân tử bằng phương pháp nhóm nhiều hạng tử

* Phương pháp:

- kết hợp các hạng tử phù hợp thành từng nhóm.

- Áp dụng thường xuyên các phương pháp đặt nhân tử phổ biến hoặc sử dụng hằng đẳng thức.

* Ví dụ: Phân tích các nhiều thức sau thành nhân tử

 a) 2x3 – 3x2 + 2x – 3 = ( 2x3 + 2x) – (3x2 + 3)

= 2x(x2 + 1) – 3( x2 + 1) = ( x2 + 1)( 2x – 3)

 b) x2 – 2xy + y2 – 16 = (x – y)2 - 42 = ( x – y – 4)( x –y + 4)

4. Cách thêm sút 1 hạng tử hoặc tách hạng tử nhằm phân tích đa thức thành nhân tử

* Phương pháp:

- áp dụng thêm bớt hạng tử linh hoạt để đưa về team hạng tử tầm thường hoặc dùng hằng đẳng thức

 * Ví dụ: Phân tích các đa thức sau thành nhân tử

 a) x4 + 4 = x4 + (4x2 - 4x2) + 4 = x4 + 4x2 + 4 - 4x2 = (x2+2)2 - 4x2

= (x2+2-2x)(x2+2+2x)

 b) x4 + 1 = x4 + 2x2 - 2x2 + 1 = x4 + 2x2 + 1 - 2x2 = (x2+1)2 - 2x2 = (x2+1)2 - (x√2)2

= (x2+1-x√2)(x2+1+x√2)

 c) 3x2 + 8x + 4 = 3x2 + 8x + 16 - 12 = (3x2 – 12) + (8x + 16) = 3(x2 - 4) + 8(x+2)

 =3(x-2)(x+2) + 8(x+2) =(x + 2)<3(x-2)+8> =(x + 2)(3x + 2)

 hoặc: 3x2 + 8x + 4 = 4x2 - x2 + 8x + 4 = (4x2 + 8x + 4) – x2 = (2x + 2)2 – x2

 = (2x + 2 – x)(2x + 2 + x) = (x + 2)(3x + 2)

5. Phối thích hợp nhiều phương thức để phân tích nhiều thức thành nhân tử

* Phương pháp: Sử dụng các phương pháp trên theo máy tự ưu tiên.

- phương pháp đặt nhân tử chung.

- phương thức dùng hằng đẳng thức.

- phương pháp nhóm các hạng tử.

 * Ví dụ: Phân tích nhiều thức sau thành nhân tử

 a) 3xy2 - 6xy + 3x

= 3x(y2 – 2y + 1) (đặt nhân tử chung)

= 3x(y – 1)2 (dùng hằng đẳng thức (A–B)2= A2– 2AB+ B2 trong bước này A là y B là 1)

 b) 2x2 + 4x + 2 - 2y2

= 2((x2 + 2x +1) - y2) (đặt nhân tử chung)

= 2((x+1)2 - y2) (dùng hằng đẳng thức: (A+B)2= A2+2AB+B2) trong bước này A là x; B là 1)

= 2(x+1-y)(x+1+y) (dùng hằng đẳng thức: A2–B2= (A-B)(A+B) trong đoạn này A là x+ 1 còn B là y)

*

II. Vận dụng giải một số trong những dạng bài bác tập phân tích nhiều thức thành nhân tử

Bài 39 trang 19 skg toán 8 tập 1: Phân tích nhiều thức thành nhân tử

 a) 3x - 6y;

 b)

*
;

 c) 14x2y – 21xy2 + 28x2y2;

 d)

*
;

 e) 10x(x - y) - 8y(y - x).

* lời giải bài 39 trang 19 skg toán 8 tập 1:

 a) 3x - 6y = 3(x-2y)

 b)

*
*

 c) 14x2y – 21xy2 + 28x2y2 = 7xy.2x - 7xy.3y +7xy.4xy = 7xy(2x-3y+4xy)

 d) 

*
*

 e) 10x(x - y) - 8y(y - x)

- Ta thấy: y - x = –(x – y) buộc phải ta có:

 10x(x - y) - 8y(y - x) =10x(x - y) - 8y<-(x - y)> =10x(x - y) + 8y(x - y) =2(x-y)(5x+4y)

Bài 40 trang 19 skg toán 8 tập 1: Tính quý giá của biểu thức

a) 15.91,5 + 150.0,85;

b) x(x - 1) - y(1 - x) trên x = 2001 với y = 1999.

* giải mã bài 40 trang 19 skg toán 8 tập 1:

- giữ ý: với dạng bài tập này chúng ta cần phân tích hạng tử để xuất hiện nhân tử thông thường rồi đối chiếu thành nhân tử trước khi tính giá bán trị.

a) 15.91,5 + 150.0,85 =15.91,5 + 15.10.0,85 =15(91,5 + 10.0,85) =15(91,5 + 8,5) =15.100 =1500.

b) x(x - 1) - y(1 - x)

- Ta thấy: 1 - x = -(x - 1) nên ta có:

 x(x - 1) - y(1 - x) =x(x-1)-y<-(x-1)> =x(x-1)+y(x-1) =(x-1)(x+y)

- Thay x = 2001 và y = 1999 ta được: (2001-1)(2001+1999) =2000.4000 =8000000

Bài 41 trang 19 skg toán 8 tập 1: Tìm x, biết:

a) 5x(x -2000) - x + 2000 = 0;

b) x3 – 13x = 0

* giải thuật bài 41 trang 19 skg toán 8 tập 1:

a) 5x(x -2000) - x + 2000 = 0

⇔ 5x(x – 2000) – (x – 2000) = 0

⇔ (x – 2000).(5x – 1) = 0

*
*

- tóm lại có 2 cực hiếm x tán đồng là x = 2000 với x = 1/5.

b) x3 = 13x ⇔ x3 – 13x = 0 ⇔ x(x2 – 13) = 0

*
 ⇔
*

- Kết luận: Có bố giá trị của x vừa lòng là x = 0, x = √13 với x = –√13.

Bài 42 trang 19 skg toán 8 tập 1:  chứng minh rằng 55n + 1 – 55n chia hết mang đến 54 (với n là số trường đoản cú nhiên)

* Lời giải Bài 42 trang 19 skg toán 8 tập 1: 

- Ta có: 55n + 1 – 55n = 55n.55 - 55n = 55n (55 - 1) = 55n.54

- vị 54 phân tách hết mang đến 54 yêu cầu 55n.54 luôn chia hết đến 54 cùng với n là số tự nhiên.

⇒ Vậy 55n + 1 – 55n chia hết mang lại 54.

Bài 43 trang 20 skg toán 8 tập 1: Phân tích các đa thức sau thành nhân tử:

a) x2 + 6x + 9; b) 10x – 25 – x2

c) ; d)

* giải thuật bài 43 trang 20 skg toán 8 tập 1:

a) x2 + 6x + 9 = (x)2 + 2.(x).(3) + (3)2 = (x+3)2

b) 10x – 25 – x2 = –(–10x + 25 + x2) = –(x2 - 10x + 25)

= –<(x)2 – 2.(5).(x) + (5)2> = –(x–5)2

c)

*
*
*

d) 

*
*

Bài 44 trang 20 skg toán 8 tập 1: Phân tích những đa thức sau thành nhân tử:

a)  ; b) (a + b)3 – (a – b)3 

c) (a + b)3 + (a – b)3 ;

d) 8x3 + 12x2y + 6xy2 + y3

e) - x3 + 9x2 – 27x + 27.

* giải mã bài 44 trang trăng tròn skg toán 8 tập 1: 

a)

*
*
*

b) (a + b)3 – (a – b)3

= <(a + b) – (a – b)> . <(a + b)2 + (a + b).(a – b) + (a – b)2>

= (a + b – a + b) . (a2 + 2ab + b2 + a2 – b2+ a2 – 2ab + b2)

= 2b.(3a2+ b2)

c) (a + b)3 + (a – b)3

= <(a + b) + (a – b)> . <(a + b)2 – (a + b)(a –b) + (a – b)2>

= <(a + b) + (a – b)> . <(a2 + 2ab + b2) – (a2 – b2) + (a2 – 2ab + b2)>

= (a + b + a – b) . (a2 + 2ab + b2 – a2 + b2 + a2 – 2ab + b2)

= 2a.(a2 + 3b2)

d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3.(2x)2.y + 3.2x.y2 + y3 = (2x + y)3

e) –x3 + 9x2 – 27x + 27= (–x)3 + 3.(–x)2.3 + 3.(–x).32 + 33 = (–x + 3)3 = (3 – x)3

Bài 45 trang trăng tròn skg toán 8 tập 1: Tìm x, biết:

a) 2 - 25x2 = 0

b) 

* giải mã bài 45 trang 20 skg toán 8 tập 1:

a) 2 - 25x2 = 0 

*
*
*

- Kết luận: vậy bao gồm 2 nghiệm thoả là x = -√2/5 và x= √2/5.

b) 

*
*
*

- Kết luận: vậy có 1 nghiệm thoả là x=1/2.

Bài 46 trang 21 skg toán 8 tập 1: Tính nhanh

a) 732 - 272 ; b) 372 - 132 ; c) 20022 - 22

* lời giải bài 46 trang 21 skg toán 8 tập 1:

a) 732 – 272 = (73 + 27)(73 – 27) = 100.46 = 4600

b) 372 – 132 = (37 + 13)(37 – 13) = 50.24 = 100.12 = 1200

c) 20022 – 22 = (2002 + 2)(2002 – 2) = 2004 .2000 = 4008000

Bài 47 trang 22 skg toán 8 tập 1: Phân tích các đa thức sau thành nhân tử

a) x2 –xy + x – y

b) xz + yz – 5(x + y)

c) 3x2 – 3xy – 5x + 5y

* giải thuật bài 47 trang 22 skg toán 8 tập 1:

a) x2 – xy + x – y

+) Cách 1: Nhóm nhị hạng tử thiết bị 1 với thứ 2, hạng tử máy 3 với thứ 4

 x2 – xy + x – y = (x2 – xy) + (x – y) = x(x – y) + (x – y)= (x – y)(x + 1)

+) cách 2: Nhóm hạng tử máy 1 với thứ 3 ; hạng tử thứ 2 và sản phẩm 4

 x2 – xy + x – y = (x2 + x) – (xy + y)= x.(x + 1) – y.(x + 1) = (x + 1)(x – y)

b) xz + yz – 5(x + y) = (xz + yz) – 5(x + y) = z(x + y) – 5(x + y) = (x + y)(z – 5)

c) 3x2 – 3xy – 5x + 5y

+) Cách 1: Nhóm hai hạng tử thứ nhất với nhau cùng hai hạng tử cuối với nhau:

 3x2 – 3xy – 5x + 5y = (3x2 – 3xy) – (5x – 5y) = 3x(x – y) – 5(x – y) = (x – y)(3x – 5)

+) giải pháp 2: Nhóm hạng tử lần thứ nhất với hạng tử sản phẩm công nghệ 3; hạng tử thứ 2 với hạng tử máy 4:

 3x2 – 3xy – 5x + 5y = (3x2 – 5x) – (3xy – 5y) = x(3x – 5) – y(3x – 5)= (3x – 5)(x – y).

Bài 48 trang 22 skg toán 8 tập 1: Phân tích các đa thức sau thành nhân tử

a) x2 + 4x –y2 + 4

b) 3x2 + 6xy + 3y2 – 3z2

c) x2 – 2xy + y2 – z2 + 2zt – t2

* lời giải Bài 48 trang 22 skg toán 8 tập 1:

a) x2 + 4x – y2 + 4

= (x2 + 4x + 4) – y2

= (x + 2)2 – y2 

= (x + 2 – y)(x + 2 + y)

b) 3x2 + 6xy + 3y2 – 3z2 

= 3.(x2 + 2xy + y2 – z2)

= 3<(x2 + 2xy + y2) – z2>

= 3<(x + y)2 – z2>

= 3(x + y – z)(x + y + z)

c) x2 – 2xy + y2 – z2 + 2zt – t2 

= (x2 – 2xy + y2) – (z2 – 2zt + t2) 

= (x – y)2 – (z – t)2

= <(x – y) – (z – t)><(x – y) + (z – t)>

= (x – y – z + t)(x – y + z –t)

Bài 50 trang 23 sgk toán 8 tập 1: Tìm x, biết:

a) x(x – 2) + x – 2 = 0

b) 5x(x – 3) – x + 3 = 0

* giải thuật bài 50 trang 23 sgk toán 8 tập 1:

a) x(x – 2) + x – 2 = 0

⇔ (x – 2)(x + 1) = 0

*
 
*

- Kết luận: vậy x = – 1 hoặc x = 2.

b) 5x(x – 3) – x + 3 = 0

⇔ 5x(x – 3) – (x – 3) = 0

⇔ (x – 3)(5x – 1) = 0

*
*
*

- Kết luận: vậy x = 3 hoặc x = 1/5.

Bài 51 trang 24 sgk toán 8 tập 1: Phân tích những đa thức sau thành nhân tử:

a) x3 – 2x2 + x.

b) 2x2 + 4x + 2 – 2y2

c) 2xy – x2 – y2 + 16

* lời giải bài 51 trang 24 sgk toán 8 tập 1:

a) x3 – 2x2 + x

= x.x2 – x.2x + x.1

= x(x2 – 2x + 1)

= x(x – 1)2

b) 2x2 + 4x + 2 – 2y2 

= 2.(x2 + 2x + 1 – y2)

= 2<(x2 + 2x + 1) – y2>

= 2<(x + 1)2 – y2>

= 2(x + 1 – y)(x + 1 + y)

c) 2xy – x2 – y2 + 16

= 16 – (x2 – 2xy + y2) 

= 42 – (x – y)2

= <4 – (x – y)><4 + (x + y)>

= (4 – x + y)(4 + x – y).

Bài 52 trang 24 sgk toán 8 tập 1: Chứng minh rằng (5n + 2)2 – 4 phân tách hết cho 5 với tất cả số nguyên n.

* giải thuật bài 52 trang 24 sgk toán 8 tập 1:

- Ta có: (5n + 2)2 – 4 = (5n + 2)2 – 22 = (5n + 2 – 2)(5n + 2 + 2)= 5n(5n + 4)

- vì chưng 5 ⋮ 5 yêu cầu 5n(5n + 4) ⋮ 5 ∀n ∈ Ζ.

Xem thêm: Giải Vnen Toán 8 Ôn Tập Chương 1 (Trang 33), Sách Giải Bài Tập Toán Lớp 8 Ôn Tập Chương 1

⇒ Vậy (5n + 2)2 – 4 luôn luôn chia hết mang đến 5 cùng với n ∈ Ζ

Bài 53 trang 24 sgk toán 8 tập 1: Phân tích những đa thức sau thành nhân tử:

a) x2 – 3x + 2

b) x2 + x – 6

c) x2 + 5x + 6

(Gợi ý : Ta không thể áp dụng ngay các phương pháp đã học để phân tích cơ mà nếu bóc tách hạng tử - 3x = - x – 2x thì ta tất cả x2 – 3x + 2 = x2 – x – 2x + 2 với từ đó thuận lợi phân tích tiếp.

Cũng gồm thể bóc 2 = - 4 + 6, lúc đó ta gồm x2 – 3x + 2 = x2 – 4 – 3x + 6, trường đoản cú đó dễ dàng phân tích tiếp)